Continuous Planning for an Autonomous Rover

Tara Estlin, Forest Fisher, Daniel Gaines, Caroline Chouinard, Steve Schaffer, and Issa Nesnas

9 NASA Jet Propulsion Laboratory
California Institute of Technology

Unmanned Vehicle Office Presentation

Why Autonomous Rovers?

- A number of upcoming missions involve robotic explorers
- Rovers require capabilities for:
 - Long-range traverses
 - Numerous science experiments
 - Opportunistic science
 - Failure recovery
- Key aspect of rover missions is the generation and execution of command sequences
 - Sojourner and `03 Mars Exploration Rovers (MER) mission model is to generate sequences on ground
 - Significant manual effort
 - Rovers have limited ability to react if something unexpected happens during sequence execution
 - E.g., navigation problem, out-of-range sensor reading, new science op
 - Typical procedure is to safe rover and wait for ground communication – causes hours of lost science time!

- Planning system is part of rover's onboard software
 - Intended to run with minimal communication w/ ground
 - Interacts directly with low-level rover control software
- Operation overview:
 - Accepts science and engineering goals
 - Has model of rover operations, resources, and flight rules (e.g., power constraints, action A must precede action B, etc.,)
 - Creates a rover command sequence (or plan) to achieve as many goals as possible
 - Executes plan on low-level control software
 - Receives updates on state and resource data (e.g., energy, memory position)
 - Continually monitors execution and re-plans when problems, new goals or unexpected events are detected
- Have tested with several different hardware platforms, including Rocky 7, Rocky 8, and FIDO

Challenges

Control of the second of the control of the second of the control of

- Onboard system needs to reason about a rich model of resource and temporal constraints
 - Must be capable of generating valid command sequences
 - Should be capable of making science/resource trade-offs
- Must perform and/or interact with spatial-reasoning and navigation capabilities
 - Dominating characteristic of rover ops is traversing to waypoints
 - Planning and exec s/w must coordinate with several levels of navigation software
 - Path planning, obstacle avoidance, position estimation, etc.

- Must handle high degree of uncertainty since exploring unknown terrain
 - Power/memory estimations
 - Duration/temporal estimations
 - Position estimation
 - Action success

System Overview

and the second of the second o

Reactive Executive

Commands, Queries

Command Status, State & Resource Data, **Query Results**

Low-level control capabilities

CASPER Continuous Planner

- Uses model of rover activities to construct or modify a plan
 - Example goals: science requests, downlink requests
 - Example actions: move to new location, unstow mast, image, spectrometer read, transmit data
 - Example constraints: memory, power, time, position, sun angle
- Performs initial plan generation and continuous modification of rover plan
 - Monitors state and resource updates
 - Accepts new goal information
 - Uses iterative repair algorithm to repair plan inconsistencies
 - During plan modification, activities could be added, reordered, deleted, etc.
 - Plan rarely has chance to get significantly out of sync
- Enables system to achieve high-level of responsiveness
- Initial plan can be automatically or hand-generated

CASPER Interface

T. Estlin, 2/2004

Rover Testing

- System has been tested on several different rovers and in simulation
 - Rocky 7, Rocky 8, and FIDO rover prototypes
 - ROAMS rover simulation tool

Testing Scenario Description

- Multiple science targets and obstacles identified on map
 - More science goals than can be achieved based on resource levels
 - Science goals are given priority levels
- Initial plan generation selects set of targets and waypoints
 - Uses TSP algorithm to minimize traverse distance when ordering targets
- During plan execution, system monitors command status and states/resources (i.e., position, power, memory)
- Dynamic plan modifications:
 - Obstruction in planned path causes activity re-ordering
 - Memory over-subscription science activity uses extra memory
 - Energy over-subscription science activity uses extra energy

Initial Scenario Map

Also, end of day communication activity must be scheduled

Initial Plan

Executed Plan

T. Estlin, 2/2004

Rocky 8 Demonstration

Rocky 8 demonstration in JPL Mars Yard

Other Applicable Work

OASIS Traverse Science

- OASIS: Onboard Autonomous Science Investigation System
- System directed at identifying and collecting new science data during rover traverse— "opportunistic science"
- Dynamically identify new science targets by analyzing already collected data (e.g., images, spec, GPR)
- Modify rover plan using planning techniques
 - Contact earth
 - Take additional measurements
 - Alter path and take close contact measurement
- Other features
 - Intelligently prioritize data for downlink
 - Summarize data
- Currently focused on image data

15

OASIS Technology

- Feature Extraction
 - Rock/Object identification
 - Feature Extraction
 - (e.g., shape, size, albedo, texture)

- Key target signature
- Novelty identification
- Representative Sampling
- Planning and Scheduling
 - Rover plan modification
 - Resource/state analysis

MISUS Multi-Rover Coordination

- Integrates planning and data analysis techniques to provide closed-loop science collection
- Intelligently coordinates multiple rovers in performing science operations at both command level and science level

Data Analysis

- Uses clustering techniques to model distribution of rock types in surrounding terrain
- Each rover computes local model and a summary is used to create global model
- Global model is used to determine new science targets

• Planning:

- Central planner distributes goals among rovers
- Each rover has onboard planner which creates detailed, executable plan for achieving assigned goals
- Goals can be re-allocated among rovers

MISUS Architecture

MISUS Example

- Sample Scenario:
 - Determine rock distribution in surrounding area
 - Tested w/ simulator that models geological environments
- Three rovers w/ camera, spectrometer, solar panel, battery
- Science goals
 - Take images or spectral readings
 - Goals can be prioritized
- Output: model of terrain rock distribution
 - Identifies rock mineral classification and possible deposit formation

Other CASPER Deployments

- Scheduled for flight (in 2004):
 - Autonomous Sciencecraft Experiment (New Millenium Program)
 - Onboard Earth Orbiting 1 Satellitle (EO1)
 - System utilizes an integration of planning and data analysis
 - Automatically identifies and captures events of high interest
 - Also being extended to a sensor web application which uses multiple satellites
 - 3 Corner Sat (Univ of Colorado)
 - Multiple payloads onboard Air Force Satellite
 - Demonstrates stereoscopic imaging, virtual formation communications
- Mission planning tool for Antarctica Mapping Mission (MAMM) 2000
- Also applied to:
 - Ground communications station control
 - Distributed agent coordination (spacecraft and rover)

